Restricting short-wavelength light in the evening to improve sleep in recreational athletes - A pilot study

Abstract
Sleep is crucial for recovery and skill acquisition in athletes. Paradoxically, athletes often encounter difficulties initiating and maintaining sleep, while having sufficient sleep opportunity. Blue (short-wavelength) light as emitted by electronic screens is considered a potential sleep thief, as it suppresses habitual melatonin secretion. The current study sought to investigate whether blocking short-wavelength light in the evening can improve sleep onset latency and potentially other sleep parameters among recreational athletes. The study had a within-subject crossover design. Fifteen recreational athletes, aged between 18 and 32 years (12 females, 3 males), were randomly assigned to start the intervention period with either the light restriction condition (LR; amber-lens glasses), or the no-light restriction condition (nLR; transparent glasses). Sleep hygiene practices, actigraphy and diary-based sleep estimates were monitored during four consecutive nights within each condition. Sleep hygiene practices did not significantly differ between conditions. Results indicate that blocking short-wavelength light in the evening, as compared to habitual light exposure, significantly shortened subjective sleep onset latency (Δ = 7 min), improved sleep quality (Δ = 0.6; scale 1-10), and increased alertness the following morning. Actigraphy-based sleep estimates showed no significant differences between conditions. Blocking short-wavelength light in the evening by means of amber-lens glasses is a cost-efficient and promising means to improve subjective sleep estimates among recreational athletes in their habitual home environment. The relatively small effects of the current study may be strengthened by additionally increasing morning- and daytime light exposure and, potentially, by reducing the alerting effects of media use before bedtime.
https://pubmed.ncbi.nlm.nih.gov/30427265/
Back to blog